Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure

Abstract There are numerous studies highlighting the impacts of direct and indirect stressors on marine organisms, and multi-stressor studies of their combined effects are an increasing focus of experimental work. Lophelia pertusa is a framework-forming cold-water coral that supports numerous ecosys...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Alexis M. Weinnig, Carlos E. Gómez, Adam Hallaj, Erik E. Cordes
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2020
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-020-58556-9
https://doaj.org/article/25fcf205ed2f40c4849620fb177922ff
Description
Summary:Abstract There are numerous studies highlighting the impacts of direct and indirect stressors on marine organisms, and multi-stressor studies of their combined effects are an increasing focus of experimental work. Lophelia pertusa is a framework-forming cold-water coral that supports numerous ecosystem services in the deep ocean. These corals are threatened by increasing anthropogenic impacts to the deep-sea, such as global ocean change and hydrocarbon extraction. This study implemented two sets of experiments to assess the effects of future conditions (temperature: 8 °C and 12 °C, pH: 7.9 and 7.6) and hydrocarbon exposure (oil, dispersant, oil + dispersant combined) on coral health. Phenotypic response was assessed through three independent observations of diagnostic characteristics that were combined into an average health rating at four points during exposure and recovery. In both experiments, regardless of environmental condition, average health significantly declined during 24-hour exposure to dispersant alone but was not significantly altered in the other treatments. In the early recovery stage (24 hours), polyp health returned to the pre-exposure health state under ambient temperature in all treatments. However, increased temperature resulted in a delay in recovery (72 hours) from dispersant exposure. These experiments provide evidence that global ocean change can affect the resilience of corals to environmental stressors and that exposure to chemical dispersants may pose a greater threat than oil itself.