Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes

Abstract The shift in climate regimes around 1970s caused an overall enhancement of precipitation extremes across the globe with a specific spatial distribution pattern. We used gridded observational-reanalysis precipitation dataset and two important extreme precipitation measures, namely Annual Max...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Subharthi Sarkar, Rajib Maity
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-021-90854-8
https://doaj.org/article/24defc7e15cb44ca8700a3b239f66dc1
Description
Summary:Abstract The shift in climate regimes around 1970s caused an overall enhancement of precipitation extremes across the globe with a specific spatial distribution pattern. We used gridded observational-reanalysis precipitation dataset and two important extreme precipitation measures, namely Annual Maximum Daily Precipitation (AMDP) and Probable Maximum Precipitation (PMP). AMDP is reported to increase for almost two-third of the global land area. The variability of AMDP is found to increase more than its mean that eventually results in increased PMP almost worldwide, less near equator and maximum around mid-latitudes. Continent-wise, such increase in AMDP and PMP is true for all continents except some parts of Africa. The zone-wise analysis (dividing the globe into nine precipitation zones) reveals that zones of ‘moderate precipitation’ and ‘moderate seasonality’ exhibit the maximum increases in PMP. Recent increased in pole-ward heat and moisture transport as a result of Arctic Amplification may be associated with such spatial redistribution of precipitation extremes in the northern hemisphere.