CXCR3 chemokine receptor contributes to specific CD8+ T cell activation by pDC during infection with intracellular pathogens.

Chemokine receptor type 3 (CXCR3) plays an important role in CD8+ T cells migration during intracellular infections, such as Trypanosoma cruzi. In addition to chemotaxis, CXCR3 receptor has been described as important to the interaction between antigen-presenting cells and effector cells. We hypothe...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Camila Pontes Ferreira, Leonardo Moro Cariste, Isaú Henrique Noronha, Danielle Fernandes Durso, Joseli Lannes-Vieira, Karina Ramalho Bortoluci, Daniel Araki Ribeiro, Douglas Golenbock, Ricardo Tostes Gazzinelli, José Ronnie Carvalho de Vasconcelos
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2020
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0008414
https://doaj.org/article/23e3419d6736425f9d89132b616384fb
Description
Summary:Chemokine receptor type 3 (CXCR3) plays an important role in CD8+ T cells migration during intracellular infections, such as Trypanosoma cruzi. In addition to chemotaxis, CXCR3 receptor has been described as important to the interaction between antigen-presenting cells and effector cells. We hypothesized that CXCR3 is fundamental to T. cruzi-specific CD8+ T cell activation, migration and effector function. Anti-CXCR3 neutralizing antibody administration to acutely T. cruzi-infected mice decreased the number of specific CD8+ T cells in the spleen, and those cells had impaired in activation and cytokine production but unaltered proliferative response. In addition, anti-CXCR3-treated mice showed decreased frequency of CD8+ T cells in the heart and numbers of plasmacytoid dendritic cells in spleen and lymph node. As CD8+ T cells interacted with plasmacytoid dendritic cells during infection by T. cruzi, we suggest that anti-CXCR3 treatment lowers the quantity of plasmacytoid dendritic cells, which may contribute to impair the prime of CD8+ T cells. Understanding which molecules and mechanisms guide CD8+ T cell activation and migration might be a key to vaccine development against Chagas disease as those cells play an important role in T. cruzi infection control.