Fungal Diversity in a Dark Oligotrophic Volcanic Ecosystem (DOVE) on Mount Erebus, Antarctica

Fumarolic Ice caves on Antarctica’s Mt. Erebus contain a dark oligotrophic volcanic ecosystem (DOVE) and represent a deep biosphere habitat that can provide insight into microbial communities that utilize energy sources other than photosynthesis. The community assembly and role of fungi in these env...

Full description

Bibliographic Details
Published in:Biology
Main Authors: Hubert Staudigel, Laurie Connell
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2013
Subjects:
Online Access:https://doi.org/10.3390/biology2020798
https://doaj.org/article/238a920690be4d89a8aa30fbaba9ad44
Description
Summary:Fumarolic Ice caves on Antarctica’s Mt. Erebus contain a dark oligotrophic volcanic ecosystem (DOVE) and represent a deep biosphere habitat that can provide insight into microbial communities that utilize energy sources other than photosynthesis. The community assembly and role of fungi in these environments remains largely unknown. However, these habitats could be relatively easily contaminated during human visits. Sixty-one species of fungi were identified from soil clone libraries originating from Warren Cave, a DOVE on Mt. Erebus. The species diversity was greater than has been found in the nearby McMurdo Dry Valleys oligotrophic soil. A relatively large proportion of the clones represented Malassezia species (37% of Basidomycota identified). These fungi are associated with skin surfaces of animals and require high lipid content for growth, indicating that contamination may have occurred through the few and episodic human visits in this particular cave. These findings highlight the importance of fungi to DOVE environments as well as their potential use for identifying contamination by humans. The latter offers compelling evidence suggesting more strict management of these valuable research areas.