Opportunities for improving pLDH-based malaria diagnostic tests

Abstract Background Monoclonal antibodies to Plasmodium lactate dehydrogenase (pLDH) have been previously used to format immunochromatographic tests for the diagnosis of malaria. Using pLDH as an antigen has several advantages as a sensitive measure of the presence of parasites within patient blood...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Choi Young, Buchanan Ian, Piper Robert C, Makler Michael T
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2011
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-10-213
https://doaj.org/article/236d00798f9b45ca9ec0c85686026fe3
Description
Summary:Abstract Background Monoclonal antibodies to Plasmodium lactate dehydrogenase (pLDH) have been previously used to format immunochromatographic tests for the diagnosis of malaria. Using pLDH as an antigen has several advantages as a sensitive measure of the presence of parasites within patient blood samples. However, variable results in terms of specificity and sensitivity among different commercially available diagnostic kits have been reported and it has not been clear from these studies whether the performance of an individual test is due simply to how it is engineered or whether it is due to the biochemical nature of the pLDH-antibody reaction itself. Methods A series of systematic studies to determine how various pLDH monoclonal antibodies work in combination was undertaken. Different combinations of anti-pLDH monoclonal antibodies were used in a rapid-test immunochromatographic assay format to determine parameters of sensitivity and specificity with regard to individual Plasmodium species. Results Dramatic differences were found in both species specificity and overall sensitivity depending on which antibody is used on the immunochromatographic strip and which is used on the colorimetric colloidal-gold used for visual detection. Discussion The results demonstrate the feasibility of different test formats for the detection and speciation of malarial infections. In addition, the data will enable the development of a universal rapid test algorithm that may potentially provide a cost-effective strategy to diagnose and manage patients in a wide range of clinical settings. Conclusion These data emphasize that using different anti-pLDH antibody combinations offers a tractable way to optimize immunochromatographic pLDH tests.