Population pharmacokinetics of artesunate and dihydroartemisinin following single- and multiple-dosing of oral artesunate in healthy subjects

Abstract Background The population pharmacokinetics of artesunate (AS) and its active metabolite dihydroartemisinin (DHA) were studied in healthy subjects receiving single- or multiple-dosing of AS orally either in combination with pyronaridine (PYR) or as a monotherapy with or without food. Methods...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Kirsch Lee E, Yu Kyung-Sang, Jang In-Jin, Naik Himanshu, Tan Beesan, Shin Chang-Sik, Craft J, Fleckenstein Lawrence
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2009
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-8-304
https://doaj.org/article/2342b8b6001247b5ac8aee424c3b8491
Description
Summary:Abstract Background The population pharmacokinetics of artesunate (AS) and its active metabolite dihydroartemisinin (DHA) were studied in healthy subjects receiving single- or multiple-dosing of AS orally either in combination with pyronaridine (PYR) or as a monotherapy with or without food. Methods Data from 118 concentration-time profiles arising from 91 healthy Korean subjects were pooled from four Phase I clinical studies. Subjects received 2-5 mg/kg of single- and multiple-dosing of oral AS either in combination with PYR or as a monotherapy with or without food. Plasma AS and DHA were measured simultaneously using a validated liquid chromatography- mass spectrometric method with a lower limit of quantification of 1 ng/mL for both AS and DHA. Nonlinear mixed-effect modelling was used to obtain the pharmacokinetic and variability (inter-individual and residual variability) parameter estimates. Results A novel parent-metabolite pharmacokinetic model consisting of a dosing compartment, a central compartment for AS, a central compartment and a peripheral compartment for DHA was developed. AS and DHA data were modelled simultaneously assuming stoichiometric conversion to DHA. AS was rapidly absorbed with a population estimate of absorption rate constant (Ka) of 3.85 h -1 . The population estimates of apparent clearance (CL/F) and volume of distribution (V2/F) for AS were 1190 L/h with 36.2% inter-individual variability (IIV) and 1210 L with 57.4% IIV, respectively. For DHA, the population estimates of apparent clearance (CLM/F) and central volume of distribution (V3/F) were 93.7 L/h with 28% IIV and 97.1 L with 30% IIV, respectively. The population estimates of apparent inter-compartmental clearance (Q/F) and peripheral volume of distribution (V4/F) for DHA were 5.74 L/h and 18.5 L, respectively. Intake of high-fat and high-caloric meal prior to the drug administration resulted in 84% reduction in Ka. Body weight impacted CLM/F, such that a unit change in weight resulted in 1.9-unit change in CLM/F in the same ...