Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produc...

Full description

Bibliographic Details
Published in:Annales Geophysicae
Main Authors: M. Ashrafi, M. J. Kosch, F. Honary
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2005
Subjects:
Q
Online Access:https://doi.org/10.5194/angeo-23-135-2005
https://doaj.org/article/21d7e84dd9da4187adc1a382637f4c86
Description
Summary:Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer) are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.