Spatio-temporal analysis of Plasmodium falciparum prevalence to understand the past and chart the future of malaria control in Kenya

Abstract Background Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used t...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Peter M. Macharia, Emanuele Giorgi, Abdisalan M. Noor, Ejersa Waqo, Rebecca Kiptui, Emelda A. Okiro, Robert W. Snow
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2018
Subjects:
Online Access:https://doi.org/10.1186/s12936-018-2489-9
https://doaj.org/article/2094916db5394cbfab56e0394bbdda64
Description
Summary:Abstract Background Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria control in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision of malaria strategies to those that support pre-elimination or those that require additional control efforts. Methods Plasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 2–10 years (PfPR2–10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2–10 was compared against plausible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probability for two important policy thresholds PfPR2–10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability). Results 5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean modelled PfPR2–10 from 21.2% (ICR: 13.8–32.1%) in 1990 to 2.6% (ICR: 1.8–3.9%) in 2015. The most significant decline began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vector control coverage or changing therapeutics. Over the period 2013–2015, of Kenya’s 47 counties, 23 had an average PfPR2–10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya’s 2015 population live in areas with PfPR2–10 ≥ 30%; while 61% live in areas where PfPR2–10 is < 1%. Conclusions Kenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas today confidently and consistently with < 1% prevalence require a revised approach to control and a ...