Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in t...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Seok-Woo Son, Bo-Reum Han, Chaim I Garfinkel, Seo-Yeon Kim, Rokjin Park, N Luke Abraham, Hideharu Akiyoshi, Alexander T Archibald, N Butchart, Martyn P Chipperfield, Martin Dameris, Makoto Deushi, Sandip S Dhomse, Steven C Hardiman, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M O’Connor, Luke D Oman, David A Plummer, Andrea Pozzer, Laura E Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Simone Tilmes, Yousuke Yamashita, Guang Zeng
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing 2018
Subjects:
Q
Online Access:https://doi.org/10.1088/1748-9326/aabf21
https://doaj.org/article/1fe9e40497b542419791254e6fa0ae7f
Description
Summary:The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.