Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign

Establishing the relationship between marine boundary layer (MBL) aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addre...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: C. S. Law, M. J. Smith, M. J. Harvey, T. G. Bell, L. T. Cravigan, F. C. Elliott, S. J. Lawson, M. Lizotte, A. Marriner, J. McGregor, Z. Ristovski, K. A. Safi, E. S. Saltzman, P. Vaattovaara, C. F. Walker
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/acp-17-13645-2017
https://doaj.org/article/1f3cfcda1f444ad5a1448f747b9cda5a
Description
Summary:Establishing the relationship between marine boundary layer (MBL) aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production) campaign, which examined air–sea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw) and associated air–sea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25 nmol L −1 and 100 µmol m −2 d −1 , respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity ( k DMS ) by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector, contaminant markers and a common aerosol inlet facilitated multi-sensor ...