The heritable landscape of near-infrared and Raman spectroscopic measurements to improve lipid content in Atlantic salmon fillets

Abstract Background Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content...

Full description

Bibliographic Details
Published in:Genetics Selection Evolution
Main Authors: Gareth F. Difford, Siri S. Horn, Katinka R. Dankel, Bente Ruyter, Binyam S. Dagnachew, Borghild Hillestad, Anna K. Sonesson, Nils K. Afseth
Format: Article in Journal/Newspaper
Language:German
English
French
Published: BMC 2021
Subjects:
Online Access:https://doi.org/10.1186/s12711-021-00605-6
https://doaj.org/article/1c98ecd320814b77ab8224f044ba68b3
Description
Summary:Abstract Background Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content is needed for sustained genetic progress in these two traits. The laboratory-based reference method for recording fillet lipid content is highly accurate and precise but, at the same time, expensive, time-consuming, and destructive. Here, we test the use of rapid and cheaper vibrational spectroscopy methods, namely near-infrared (NIR) and Raman spectroscopy both as individual phenotypes and phenotypic predictors of lipid content in Atlantic salmon. Results Remarkably, 827 of the 1500 individual Raman variables (i.e. Raman shifts) of the Raman spectrum were significantly heritable (heritability (h2) ranging from 0.15 to 0.65). Similarly, 407 of the 2696 NIR spectral landscape variables (i.e. wavelengths) were significantly heritable (h2 = 0.27–0.40). Both Raman and NIR spectral landscapes had significantly heritable regions, which are also informative in spectroscopic predictions of lipid content. Partial least square predicted lipid content using Raman and NIR spectra were highly concordant and highly genetically correlated with the lipid content values ( $${r}_{\text{g}}$$ r g = 0.91–0.98) obtained with the reference method using Lin’s concordance correlation coefficient (CCC = 0.63–0.90), and were significantly heritable ( $${h}^{2}$$ h 2 = 0.52–0.67). Conclusions Both NIR and Raman spectral landscapes show substantial additive genetic variation and are highly genetically correlated with the reference method. These findings lay down the foundation for rapid spectroscopic measurement of lipid content in salmonid breeding programmes.