Decadal Changes of the Reflected Solar Radiation and the Earth Energy Imbalance

Decadal changes of the Reflected Solar Radiation (RSR) as measured by CERES from 2000 to 2018 are analysed. For both polar regions, changes of the clear-sky RSR correlate well with changes of the Sea Ice Extent. In the Arctic, sea ice is clearly melting, and as a result the earth is becoming darker...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Steven Dewitte, Nicolas Clerbaux, Jan Cornelis
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
Q
Online Access:https://doi.org/10.3390/rs11060663
https://doaj.org/article/1bfe4ebeb1e1437398d72e82a1a84348
Description
Summary:Decadal changes of the Reflected Solar Radiation (RSR) as measured by CERES from 2000 to 2018 are analysed. For both polar regions, changes of the clear-sky RSR correlate well with changes of the Sea Ice Extent. In the Arctic, sea ice is clearly melting, and as a result the earth is becoming darker under clear-sky conditions. However, the correlation between the global all-sky RSR and the polar clear-sky RSR changes is low. Moreover, the RSR and the Outgoing Longwave Radiation (OLR) changes are negatively correlated, so they partly cancel each other. The increase of the OLR is higher then the decrease of the RSR. Also the incoming solar radiation is decreasing. As a result, over the 2000–2018 period the Earth Energy Imbalance (EEI) appears to have a downward trend of −0.16 ± 0.11 W/m2dec. The EEI trend agrees with a trend of the Ocean Heat Content Time Derivative of −0.26 ± 0.06 (1 σ ) W/m2dec.