A systematic review of artificial reefs as platforms for coral reef research and conservation.

Artificial reefs (ARs) have been used on coral reefs for ecological research, conservation, and socio-cultural purposes since the 1980s. We examined spatio-temporal patterns in AR deployment in tropical and subtropical coral reefs (up to 35° latitude) and evaluated their efficacy in meeting conserva...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Emily Higgins, Anna Metaxas, Robert E Scheibling
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2022
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0261964
https://doaj.org/article/1b3494e16b2b4fc1baeb8bc0e960d76f
Description
Summary:Artificial reefs (ARs) have been used on coral reefs for ecological research, conservation, and socio-cultural purposes since the 1980s. We examined spatio-temporal patterns in AR deployment in tropical and subtropical coral reefs (up to 35° latitude) and evaluated their efficacy in meeting conservation objectives, using a systematic review of the scientific literature. Most deployments (136 studies) were in the North Atlantic and Central Indo-Pacific in 1980s - 2000s, with a pronounced shift to the Western Indo-Pacific in 2010s. Use of ARs in reef restoration or stressor mitigation increased markedly in response to accelerating coral decline over the last 2 decades. Studies that evaluated success in meeting conservation objectives (n = 51) commonly reported increasing fish abundance (55%), enhancing habitat quantity (31%) or coral cover (27%), and conserving target species (24%). Other objectives included stressor mitigation (22%), provision of coral nursery habitat (14%) or source populations (2%) and addressing socio-cultural and economic values (16%). Fish (55% of studies) and coral (53%) were the most commonly monitored taxa. Success in achieving conservation objectives was reported in 33 studies. Success rates were highest for provision of nursery habitat and increasing coral cover (each 71%). Increasing fish abundance or habitat quantity, mitigating environmental impacts, and attaining socio-cultural objectives were moderately successful (60-64%); conservation of target species was the least successful (42%). Failure in achieving objectives commonly was attributed to poor AR design or disruption by large-scale bleaching events. The scale of ARs generally was too small (m2 -10s m2) to address regional losses in coral cover, and study duration too short (< 5 years) to adequately assess ecologically relevant trends in coral cover and community composition. ARs are mostly likely to aid in reef conservation and restoration by providing nursery habitat for target species or recruitment substrate for corals ...