Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa.

Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic us...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Chinyere K Okoro, Lars Barquist, Thomas R Connor, Simon R Harris, Simon Clare, Mark P Stevens, Mark J Arends, Christine Hale, Leanne Kane, Derek J Pickard, Jennifer Hill, Katherine Harcourt, Julian Parkhill, Gordon Dougan, Robert A Kingsley
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2015
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0003611
https://doaj.org/article/19d3bc0a149848cbba6fc1b1f3944b49
Description
Summary:Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population.