Selfish bacteria are active throughout the water column of the ocean

Abstract Heterotrophic bacteria in the ocean invest carbon, nitrogen, and energy in extracellular enzymes to hydrolyze large substrates to smaller sizes suitable for uptake. Since hydrolysis products produced outside of a cell may be lost to diffusion, the return on this investment is uncertain. Sel...

Full description

Bibliographic Details
Published in:ISME Communications
Main Authors: Greta Giljan, Sarah Brown, C. Chad Lloyd, Sherif Ghobrial, Rudolf Amann, Carol Arnosti
Format: Article in Journal/Newspaper
Language:English
Published: Springer Nature 2023
Subjects:
Online Access:https://doi.org/10.1038/s43705-023-00219-7
https://doaj.org/article/175205633af34912903e7f831ae71ffe
Description
Summary:Abstract Heterotrophic bacteria in the ocean invest carbon, nitrogen, and energy in extracellular enzymes to hydrolyze large substrates to smaller sizes suitable for uptake. Since hydrolysis products produced outside of a cell may be lost to diffusion, the return on this investment is uncertain. Selfish bacteria change the odds in their favor by binding, partially hydrolyzing, and transporting polysaccharides into the periplasmic space without loss of hydrolysis products. We expected selfish bacteria to be most common in the upper ocean, where phytoplankton produce abundant fresh organic matter, including complex polysaccharides. We, therefore, sampled water in the western North Atlantic Ocean at four depths from three stations differing in physiochemical conditions; these stations and depths also differed considerably in microbial community composition. To our surprise, we found that selfish bacteria are common throughout the water column of the ocean, including at depths greater than 5500 m. Selfish uptake as a strategy thus appears to be geographically—and phylogenetically—widespread. Since processing and uptake of polysaccharides require enzymes that are highly sensitive to substrate structure, the activities of these bacteria might not be reflected by measurements relying on uptake only of low molecular weight substrates. Moreover, even at the bottom of the ocean, the supply of structurally-intact polysaccharides, and therefore the return on enzymatic investment, must be sufficient to maintain these organisms.