The Arctic Winter Seasons 2016 and 2017: Climatological Context and Analysis

In this study, we show that the extreme Arctic winter 2015/16 can be partially explained by the superposition of different atmospheric teleconnection patterns, such as the Arctic Oscillation, the Pacific-North American teleconnection, and El Niño—Southern Oscillation, whereas winter 2016/17 had diff...

Full description

Bibliographic Details
Published in:Climate
Main Author: Monica Ionita
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
Q
Online Access:https://doi.org/10.3390/cli11010019
https://doaj.org/article/16d07414f9e641b1981da3c6fb3f4c14
Description
Summary:In this study, we show that the extreme Arctic winter 2015/16 can be partially explained by the superposition of different atmospheric teleconnection patterns, such as the Arctic Oscillation, the Pacific-North American teleconnection, and El Niño—Southern Oscillation, whereas winter 2016/17 had different trigger mechanisms. While the temperature anomalies for winter 2015/16 were mainly driven by the large-scale atmospheric circulation, the temperature anomalies throughout winter 2016/17 may possibly reflect a response to the extremely wet and warm autumn of 2016. The atmospheric circulation anomalies in winter 2016/17 were not as “spectacular” as the ones in the previous winter, but autumn 2016 was one of the most exceptional autumns in the observational record so far and it features some remarkable records: the lowest temperature gradient between the Arctic and the mid-latitudes over the last 70 years, the lowest autumn sea ice extent over the last 40 years, and the warmest and wettest autumn over the last 37 years over most of the Arctic basin. Moreover, we demonstrate that although the background conditions were similar for winters 2015/2016 and 2016/2017 (e.g., reduced sea ice cover, a reduced temperature gradient between the Arctic and the mid-latitudes, and a very warm Barents Sea and Kara Sea in the previous autumn), the response of the atmospheric circulation and the regions affected by extremes (e.g., cold spells and snow cover) were rather different during these two winters.