A Complex Assemblage of Crystal Habits of Pyrite in the Volcanic Hot Springs from Kamchatka, Russia: Implications for the Mineral Signature of Life on Mars

In this study, the crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia were surveyed using scanning electron microscopy. Pyrite crystals occur either as single euhedral crystals or aggregates with a wide range of crystal sizes and morphological features. Single euhedral cryst...

Full description

Bibliographic Details
Published in:Crystals
Main Authors: Min Tang, Yi-Liang Li
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2020
Subjects:
Online Access:https://doi.org/10.3390/cryst10060535
https://doaj.org/article/154b421f7d814fe69799bce603a3b7b5
Description
Summary:In this study, the crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia were surveyed using scanning electron microscopy. Pyrite crystals occur either as single euhedral crystals or aggregates with a wide range of crystal sizes and morphological features. Single euhedral crystals, with their sizes ranging from ~200 nm to ~40 µm, exhibit combinations of cubic {100}, octahedral {111}, and pyritohedral {210} and {310} forms. Heterogeneous geochemical microenvironments and the bacterial activities in the long-lived hot springs have mediated the development and good preservation of the complex pyrite crystal habits: irregular, spherulitic, cubic, or octahedral crystals congregating with clay minerals, and nanocrystals attaching to the surface of larger pyrite crystals and other minerals. Spherulitic pyrite crystals are commonly covered by organic matter-rich thin films. The coexistence of various sizes and morphological features of those pyrite crystals indicates the results of secular interactions between the continuous supply of energy and nutritional elements by the hot springs and the microbial communities. We suggest that, instead of a single mineral with unique crystal habits, the continuous deposition of the same mineral with a complex set of crystal habits results from the ever-changing physicochemical conditions with contributions from microbial mediation.