Gasification of Woody Biomasses and Forestry Residues: Simulation, Performance Analysis, and Environmental Impact

Wood and forestry residues are usually processed as wastes, but they can be recovered to produce electrical and thermal energy through processes of thermochemical conversion of gasification. This study proposes an equilibrium simulation model developed by ASPEN Plus to investigate the performance of...

Full description

Bibliographic Details
Published in:Fermentation
Main Authors: Sahar Safarian, Seyed Mohammad Ebrahimi Saryazdi, Runar Unnthorsson, Christiaan Richter
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Online Access:https://doi.org/10.3390/fermentation7020061
https://doaj.org/article/11808a59337640c888ef83c71d279b6e
Description
Summary:Wood and forestry residues are usually processed as wastes, but they can be recovered to produce electrical and thermal energy through processes of thermochemical conversion of gasification. This study proposes an equilibrium simulation model developed by ASPEN Plus to investigate the performance of 28 woody biomass and forestry residues’ (WB&FR) gasification in a downdraft gasifier linked with a power generation unit. The case study assesses power generation in Iceland from one ton of each feedstock. The results for the WB&FR alternatives show that the net power generated from one ton of input feedstock to the system is in intervals of 0 to 400 kW/ton, that more that 50% of the systems are located in the range of 100 to 200 kW/ton, and that, among them, the gasification system derived by tamarack bark significantly outranks all other systems by producing 363 kW/ton. Moreover, the environmental impact of these systems is assessed based on the impact categories of global warming (GWP), acidification (AP), and eutrophication (EP) potentials and normalizes the environmental impact. The results show that electricity generation from WB&FR gasification is environmentally friendly for 75% of the studied systems (confirmed by a normalized environmental impact [NEI] less than 10) and that the systems fed by tamarack bark and birch bark, with an NEI lower than 5, significantly outrank all other systems owing to the favorable results obtained in the environmental sector.