Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

About a quarter of anthropogenic CO 2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO 2 levels on pelagic carbon fluxes. A gradient of different CO 2 scenarios, rang...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: K. Spilling, K. G. Schulz, A. J. Paul, T. Boxhammer, E. P. Achterberg, T. Hornick, S. Lischka, A. Stuhr, R. Bermúdez, J. Czerny, K. Crawfurd, C. P. D. Brussaard, H.-P. Grossart, U. Riebesell
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
Online Access:https://doi.org/10.5194/bg-13-6081-2016
https://doaj.org/article/10eeaf2ea37c4eddae3edd6dd82f266a
Description
Summary:About a quarter of anthropogenic CO 2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO 2 levels on pelagic carbon fluxes. A gradient of different CO 2 scenarios, ranging from ambient ( ∼ 370 µatm) to high ( ∼ 1200 µatm), were set up in mesocosm bags ( ∼ 55 m 3 ). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO 2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0–t16 II: t17–t30 III: t31–t43 ). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m −2 at the start of the experiment, and the initial CO 2 additions increased the DIC pool by ∼ 7 % in the highest CO 2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO 2 . During phase I the estimated gross primary production (GPP) was ∼ 100 mmol C m −2 day −1 , from which 75–95 % was respired, ∼ 1 % ended up in the TPC (including export), and 5–25 % was added to the DOC pool. During phase II, the respiration loss increased to ∼ 100 % of GPP at the ambient CO 2 concentration, whereas respiration was lower (85–95 % of GPP) in the highest CO 2 treatment. Bacterial production was ∼ 30 % lower, on average, at the highest CO 2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO 2 treatments at the end of phase II extending throughout phase III. The “extra” organic carbon at high CO ...