Effects of Benzo[a]pyrene, Cortisol, and 17ß-Estradiol on Liver Microsomal EROD Activity of Anguilla anguilla : An In Vitro Approach

Fish liver ethoxyresorufin-O-deethylase (EROD) activity is widely used as biomarker of exposure to chemicals such as polycyclic aromatic hydrocarbons (PAHs). It is known that endocrine system plays a major role in fish stress mechanism. Despite the considerable scientific information about steroid h...

Full description

Bibliographic Details
Published in:Applied Sciences
Main Authors: C.S.S. Ferreira, Miguel Oliveira, Maria Ana Santos, Mário Pacheco
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
T
Online Access:https://doi.org/10.3390/app11062533
https://doaj.org/article/0fb2595269c045edaa49980030c14305
Description
Summary:Fish liver ethoxyresorufin-O-deethylase (EROD) activity is widely used as biomarker of exposure to chemicals such as polycyclic aromatic hydrocarbons (PAHs). It is known that endocrine system plays a major role in fish stress mechanism. Despite the considerable scientific information about steroid hormone’s response, namely cortisol and 17ß-estradiol (E 2 ), to stress situations, little is known about the influence of these hormones on enzymes involved on the biotransformation process. Thus, this study aimed to assess the in vitro effects of environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 0.3, 0.9, and 2.7 µM) and of two steroid hormones (cortisol and 17ß-estradiol) in a physiologically relevant concentration (5.997 ng/mL), alone or in combination, on Anguilla anguilla liver microsomal EROD activity, previously induced by 4 mg/kg β-naphthoflavone intraperitoneal injection. Hepatic microsomes in vitro exposure to the tested B[a]P concentrations induced a dose response inhibition of EROD activity, whereas exposure to cortisol significantly induced the activity of this enzyme. The steroid hormones were able to decrease the inhibitory effects of B[a]P on microsomal EROD activity, thus revealing a protective effect of these hormones over enzyme activity inhibited by contaminants.