An Exosome-Laden Hydrogel Wound Dressing That Can Be Point-of-Need Manufactured in Austere and Operational Environments

Skin wounds often form scar tissue during healing. Early intervention with tissue-engineered materials and cell therapies may promote scar-free healing. Exosomes and extracellular vesicles (EV) secreted by mesenchymal stromal cells (MSC) are believed to have high regenerative capacity. EV bioactivit...

Full description

Bibliographic Details
Published in:Bioengineering
Main Authors: E. Cate Wisdom, Andrew Lamont, Hannah Martinez, Michael Rockovich, Woojin Lee, Kristin H. Gilchrist, Vincent B. Ho, George J. Klarmann
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2024
Subjects:
T
Online Access:https://doi.org/10.3390/bioengineering11080804
https://doaj.org/article/0f599152f6ff42fb9632ec583697efbe
Description
Summary:Skin wounds often form scar tissue during healing. Early intervention with tissue-engineered materials and cell therapies may promote scar-free healing. Exosomes and extracellular vesicles (EV) secreted by mesenchymal stromal cells (MSC) are believed to have high regenerative capacity. EV bioactivity is preserved after lyophilization and storage to enable use in remote and typically resource-constrained environments. We developed a bioprinted bandage containing reconstituted EVs that can be fabricated at the point-of-need. An alginate/carboxymethyl cellulose (CMC) biomaterial ink was prepared, and printability and mechanical properties were assessed with rheology and compression testing. Three-dimensional printed constructs were evaluated for Young’s modulus relative to infill density and crosslinking to yield material with stiffness suitable for use as a wound dressing. We purified EVs from human MSC-conditioned media and characterized them with nanoparticle tracking analysis and mass spectroscopy, which gave a peak size of 118 nm and identification of known EV proteins. Fluorescently labeled EVs were mixed to form bio-ink and bioprinted to characterize EV release. EV bandages were bioprinted on both a commercial laboratory bioprinter and a custom ruggedized 3D printer with bioprinting capabilities, and lyophilized EVs, biomaterial ink, and thermoplastic filament were deployed to an austere Arctic environment and bioprinted. This work demonstrates that EVs can be bioprinted with an alginate/CMC hydrogel and released over time when in contact with a skin-like substitute. The technology is suitable for operational medical applications, notably in resource-limited locations, including large-scale natural disasters, humanitarian crises, and combat zones.