Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)

Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: A. T. Holland, C. J. Williamson, F. Sgouridis, A. J. Tedstone, J. McCutcheon, J. M. Cook, E. Poniecka, M. L. Yallop, M. Tranter, A. M. Anesio, The Black & Bloom Group
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:https://doi.org/10.5194/bg-16-3283-2019
https://doaj.org/article/0e2bdf7737e04a71930b8f3b17cf042a
Description
Summary:Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µ M for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µ M for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µ M for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µ M for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µ M, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µ M for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µ M, medium: 173 µ M and high: 242 µ M) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µ M, respectively). We speculate that the architecture of the weathering crust, which impacts on water ...