Sulfur dioxide (SO 2 ) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude

We present a climatology of monthly and 10° zonal mean profiles of sulfur dioxide (SO 2 ) volume mixing ratios (vmr) derived from MIPAS/Envisat measurements in the altitude range 15–45 km from July 2002 until April 2012. The vertical resolution varies from 3.5–4 km in the lower stratosphere up to 6–...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: M. Höpfner, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, J. Orphal, G. Stiller, T. von Clarmann, B. Funke, C. D. Boone
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2013
Subjects:
Online Access:https://doi.org/10.5194/acp-13-10405-2013
https://doaj.org/article/0bc0ca93e4124bfc9cdfd287977f5a3f
Description
Summary:We present a climatology of monthly and 10° zonal mean profiles of sulfur dioxide (SO 2 ) volume mixing ratios (vmr) derived from MIPAS/Envisat measurements in the altitude range 15–45 km from July 2002 until April 2012. The vertical resolution varies from 3.5–4 km in the lower stratosphere up to 6–10 km at the upper end of the profiles, with estimated total errors of 5–20 pptv for single profiles of SO 2 . Comparisons with the few available observations of SO 2 up to high altitudes from ATMOS for a volcanically perturbed situation from ACE-FTS and, at the lowest altitudes, with stratospheric in situ observations reveal general consistency of the datasets. The observations are the first empirical confirmation of features of the stratospheric SO 2 distribution, which have only been shown by models up to now: (1) the local maximum of SO 2 at around 25–30 km altitude, which is explained by the conversion of carbonyl sulfide (COS) as the precursor of the Junge layer; and (2) the downwelling of SO 2 -rich air to altitudes of 25–30 km at high latitudes during winter and its subsequent depletion on availability of sunlight. This has been proposed as the reason for the sudden appearance of enhanced concentrations of condensation nuclei during Arctic and Antarctic spring. Further, the strong increase of SO 2 to values of 80–100 unit{pptv} in the upper stratosphere through photolysis of H 2 SO 4 has been confirmed. Lower stratospheric variability of SO 2 could mainly be explained by volcanic activity, and no hints of a strong anthropogenic influence have been found. Regression analysis revealed a QBO (quasi-biennial oscillation) signal of the SO 2 time series in the tropics at about 30–35 km, an SAO (semi-annual oscillation) signal at tropical and subtropical latitudes above 32 km and annual periodics predominantly at high latitudes. Further, the analysis indicates a correlation with the solar cycle in the tropics and southern subtropics above 30 km. Significant negative linear trends are found in the tropical lower ...