Rapid decline in pH of coral calcification fluid due to incorporation of anthropogenic CO2

Abstract Marine calcifying organisms, such as stony corals, are under threat by rapid ocean acidification (OA) arising from the oceanic uptake of anthropogenic CO2. To better understand how organisms and ecosystems will adapt to or be damaged by the resulting environmental changes, field observation...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Kaoru Kubota, Yusuke Yokoyama, Tsuyoshi Ishikawa, Atsushi Suzuki, Masao Ishii
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2017
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-017-07680-0
https://doaj.org/article/0b7463f124494da78f24d4ccd3572dd4
Description
Summary:Abstract Marine calcifying organisms, such as stony corals, are under threat by rapid ocean acidification (OA) arising from the oceanic uptake of anthropogenic CO2. To better understand how organisms and ecosystems will adapt to or be damaged by the resulting environmental changes, field observations are crucial. Here, we show clear evidence, based on boron isotopic ratio (δ11B) measurements, that OA is affecting the pH of the calcification fluid (pHCF) in Porites corals within the western North Pacific Subtropical Gyre at two separate locations, Chichijima Island (Ogasawara Archipelago) and Kikaijima Island. Corals from each location have displayed a rapid decline in δ11B since 1960. A comparison with the pH of the ambient seawater (pHSW) near these islands, estimated from a large number of shipboard measurements of seawater CO2 chemistry and atmospheric CO2, indicates that pHCF is sensitive to changes in pHSW. This suggests that the calcification fluid of corals will become less supersaturated with respect to aragonite by the middle of this century (pHCF = ~8.3 when pHSW = ~8.0 in 2050), earlier than previously expected, despite the pHCF-upregulating mechanism of corals.