Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators

Abstract This study systematically evaluates clouds simulated by the Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1) against satellite cloud observations. Both low‐ (1°) and high‐ (0.25°) resolution EAMv1 configurations generally underestimate clouds in low latitudes and midlat...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Yuying Zhang, Shaocheng Xie, Wuyin Lin, Stephen A. Klein, Mark Zelinka, Po‐Lun Ma, Philip J. Rasch, Yun Qian, Qi Tang, Hsi‐Yen Ma
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union (AGU) 2019
Subjects:
Online Access:https://doi.org/10.1029/2018MS001562
https://doaj.org/article/07324b10ba4c4929b9c29f2be826476b
Description
Summary:Abstract This study systematically evaluates clouds simulated by the Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1) against satellite cloud observations. Both low‐ (1°) and high‐ (0.25°) resolution EAMv1 configurations generally underestimate clouds in low latitudes and midlatitudes and overestimate clouds in the Arctic, although the error is smaller in the high‐resolution model. The underestimate of clouds is due to the underestimate of optically thin to intermediate clouds, as EAMv1 generally overestimates optically intermediate to thick clouds. Other model errors include the largely underpredicted marine stratocumulus along the coasts and high clouds over the tropical deep convection regions. The underestimate of thin clouds results in too much longwave radiation being emitted to space and too little shortwave radiation being reflected back to space, while the overestimate of optically intermediate and thick clouds leads to too little longwave radiation being emitted to space and too much shortwave radiation being reflected back to space. EAMv1 shows better skill in reproducing the observed distribution of clouds and their properties and has smaller radiatively relevant errors in the distribution of clouds than most of the CFMIP1 and CFMIP2 models. It produces more supercooled liquid cloud fraction than CAM5 and most CMIP5 models primarily due to a new ice nucleation scheme and secondarily due to a reduction of the ice deposition growth rate.