PARAMETERS COMPARSION OF LEADS DETECTION IN ARCTIC SEA ICE USING CRYOSAT-2 WAVEFORM DATA

Leads are only a small part of the polar sea ice structure, but they play a dominant role on the turbulence exchange between the ocean and the atmosphere, they are also important factors about sea ice thickness inversion. Since the early 2000s, Satellite altimetry has been applied to monitor the Arc...

Full description

Bibliographic Details
Published in:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Main Authors: J. Li, S. Zhang, F. Xiao, C. Zhu, Y. Zhang, T. Zhu, L. Yuan
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
T
Online Access:https://doi.org/10.5194/isprs-archives-XLII-3-825-2018
https://doaj.org/article/0668e8bea659462e8e3bb2a94b3d1fb9
Description
Summary:Leads are only a small part of the polar sea ice structure, but they play a dominant role on the turbulence exchange between the ocean and the atmosphere, they are also important factors about sea ice thickness inversion. Since the early 2000s, Satellite altimetry has been applied to monitor the Arctic sea ice thickness, Satellite altimetry data can be used to distinguish leads and sea ice. In this paper, four parameters including Pulse peakiness (PP), stack standard deviation (SSD), stack kurtosis (SKU) and stack skewness (SSK) are extracted from CryoSat-2 satellite altimetry waveform data. The four parameters are combined into five combinations (PP, PP&SSD, PP&SSD&SKU, PP&SSD&SSK, PP&SSD&SSK&SKU) with constrain conditions to detect the leads. The results of the five methods are compared with MODIS (moderate-resolution imagining spectroradiometer) images and show that, the combination of PP&SSD is better than the single PP, the rest of combinations are the same as the combination of PP&SSD. It turns out, there is no promotion when we add SSK and SKU, successively or simultaneously.