Deoxyelephantopin induces ROS-mediated autophagy and apoptosis in human colorectal cancer in vitro and in vivo

Objective: To systematically map the stepwise events leading to deoxyelephantopin-induced cell death of HCT116 human colorectal cancer cells and evaluate the effectiveness of deoxyelephantopin in vivo. Methods: HCT116 cells were treated with deoxyelephantopin at various concentrations and time point...

Full description

Bibliographic Details
Published in:Asian Pacific Journal of Tropical Biomedicine
Main Authors: Chim-Kei Chan, Kind-Leng Tong, Pooi-Fong Wong, Habsah Abdul Kadir
Format: Article in Journal/Newspaper
Language:English
Published: Wolters Kluwer Medknow Publications 2020
Subjects:
Online Access:https://doi.org/10.4103/2221-1691.276318
https://doaj.org/article/065a0cb20adf481f9566812dee362f86
Description
Summary:Objective: To systematically map the stepwise events leading to deoxyelephantopin-induced cell death of HCT116 human colorectal cancer cells and evaluate the effectiveness of deoxyelephantopin in vivo. Methods: HCT116 cells were treated with deoxyelephantopin at various concentrations and time points. Autophagy was confirmed by the detection of autophagosomes and autophagosomal proteins by electron microscopy and Western blotting assays, respectively, and then validated by siRNA knockdown. In addition, apoptosis was confirmed by the detection of apoptosis-related proteins. The intracellular reactive oxygen species (ROS) level was measured using flow cytometry. The growth inhibitory effect of deoxyelephantopin was further evaluated in vivo using a mouse xenograft model. Results: Deoxyelephantopin firstly elevated ROS production, which then triggered autophagic flux with the accumulation of autophagosomal proteins including LC3A/B, ATG5, and ATG7, followed by the induction of apoptosis via the intrinsic and extrinsic pathways. Pre-treatment with N-acetyl-L-cysteine, a ROS inhibitor, reversed both apoptosis and autophagy. The knockdown of LC3 prevented apoptosis induction which confirmed that deoxyelephantopin induced autophagy-dependent apoptosis in HCT116 cells. Accumulation of ROS also activated apoptosis via the mitogen-activated protein kinases signaling pathway. Furthermore, deoxyelephantopin also inhibited the PI3K/AKT/mTOR pathway, which then released the inhibition of autophagy. In vivo study further showed that deoxyelephantopin significantly suppressed the growth of HCT116 subcutaneous xenograft in nude mice. Conclusions: Our findings revealed that deoxyelephantopin elevates oxidative stress and induces ROS-dependent autophagy followed by apoptosis in HCT116 cells via the concerted modulation of multiple signaling pathways. These findings further support the development of deoxyelephantopin as a therapeutic agent for colorectal cancer.