Performance of recombinant chimeric proteins in the serological diagnosis of Trypanosoma cruzi infection in dogs.

Background Dogs are considered sentinels in areas of Trypanosoma cruzi transmission risk to humans. ELISA is generally the method of choice for diagnosing T. cruzi exposure in dogs, but its performance substantially depends on the antigenic matrix employed. In previous studies, our group has develop...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Leonardo M Leony, Natália E M Freitas, Rodrigo P Del-Rei, Claudia M Carneiro, Alexandre B Reis, Ana Maria Jansen, Samanta C C Xavier, Yara M Gomes, Edmilson D Silva, Mitermayer G Reis, Deborah B M Fraga, Paola A F Celedon, Nilson I T Zanchin, Filipe Dantas-Torres, Fred L N Santos
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2019
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0007545
https://doaj.org/article/033d94aa00dd4804bb87d7b345e9deb2
Description
Summary:Background Dogs are considered sentinels in areas of Trypanosoma cruzi transmission risk to humans. ELISA is generally the method of choice for diagnosing T. cruzi exposure in dogs, but its performance substantially depends on the antigenic matrix employed. In previous studies, our group has developed four chimeric antigens (IBMP-8.1, 8.2, 8.3, and 8.4) and evaluated their potential for diagnosing T. cruzi exposure in humans. For human sera, these chimeric antigens presented superior diagnostic performances as compared to commercial tests available in Brazil, Spain, and Argentina. Therefore, in this study we have evaluated the potential of these antigenic proteins for detection of anti-T. cruzi IgG antibodies in dog sera. Methodology/principal findings The IBMP-ELISA assays were optimized by checkerboard titration. Subsequently, the diagnostic potential was validated through analysis of ROC curves and the performance of the tests was determined using double entry tables. Cross-reactivity was also evaluated for babesiosis, ehrlichiosis, dirofilariosis, anaplasmosis, and visceral leishmaniasis. Best performance was shown by IBMP-8.3 and IBMP-8.4, although all four antigens demonstrated a high diagnostic performance with 46 positive and 149 negative samples tested. IBMP-8.3 demonstrated 100% sensitivity, followed by IBMP-8.4 (96.7-100%), IBMP-8.2 (73.3-87.5%), and IBMP-8.1 (50-100%). The highest specificities were achieved with IBMP-8.2 (100%) and IBMP-8.4 (100%), followed by IBMP-8.3 (96.7-97.5%) and IBMP 8.1 (89.1-100%). Conclusions/significance The use of chimeric antigenic matrices in immunoassays for anti-T. cruzi IgG antibody detection in sera of infected dogs was shown to be a promising tool for veterinary diagnosis and epidemiological studies. The chimeric antigens used in this work allowed also to overcome the common hurdles related to serodiagnosis of T. cruzi infection, especially regarding variation of efficiency parameters according to different strains and cross-reactivity with other infectious ...