North African humid periods over the past 800,000 years

Abstract The Sahara region has experienced periodic wet periods over the Quaternary and beyond. These North African Humid Periods (NAHPs) are astronomically paced by precession which controls the intensity of the African monsoon system. However, most climate models cannot reconcile the magnitude of...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Edward Armstrong, Miikka Tallavaara, Peter O. Hopcroft, Paul J. Valdes
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2023
Subjects:
Q
Online Access:https://doi.org/10.1038/s41467-023-41219-4
https://doaj.org/article/001b0d7e59074a0eba58b67c55bb1955
Description
Summary:Abstract The Sahara region has experienced periodic wet periods over the Quaternary and beyond. These North African Humid Periods (NAHPs) are astronomically paced by precession which controls the intensity of the African monsoon system. However, most climate models cannot reconcile the magnitude of these events and so the driving mechanisms remain poorly constrained. Here, we utilise a recently developed version of the HadCM3B coupled climate model that simulates 20 NAHPs over the past 800 kyr which have good agreement with NAHPs identified in proxy data. Our results show that precession determines NAHP pacing, but we identify that their amplitude is strongly linked to eccentricity via its control over ice sheet extent. During glacial periods, enhanced ice-albedo driven cooling suppresses NAHP amplitude at precession minima, when humid conditions would otherwise be expected. This highlights the importance of both precession and eccentricity, and the role of high latitude processes in determining the timing and amplitude of the NAHPs. This may have implications for the out of Africa dispersal of plants and animals throughout the Quaternary.