Airborne lidar observations supporting the ADM-Aeolus mission for global wind profiling

The Atmospheric Dynamics Mission ADM-Aeolus of ESA will be the first lidar mission to sense the global wind field from space. The instrument is based on a direct-detection Doppler lidar operating at 354.9 nm with two spectrometers for aerosol/cloud and molecular backscatter. In order to assess the p...

Full description

Bibliographic Details
Main Authors: Reitebuch, Oliver, Lemmerz, Christian, Marksteiner, Uwe, Rahm, Stephan, Witschas, Benjamin
Format: Conference Object
Language:English
Published: 2012
Subjects:
Online Access:https://elib.dlr.de/77257/
https://elib.dlr.de/77257/1/Reitebuch_ILRC_2012_print_S5O-01.pdf
Description
Summary:The Atmospheric Dynamics Mission ADM-Aeolus of ESA will be the first lidar mission to sense the global wind field from space. The instrument is based on a direct-detection Doppler lidar operating at 354.9 nm with two spectrometers for aerosol/cloud and molecular backscatter. In order to assess the performance of the Doppler lidar ALADIN on ADM-Aeolus and to optimize the retrieval algorithms with atmospheric signals, an airborne prototype – the ALADIN Airborne Demonstrator A2D – was developed. The A2D was the first airborne direct-detection Doppler lidar with its maiden flight on the DLR Falcon aircraft in 2005. Three airborne campaigns with a coherent-detection 2-μm wind lidar and the direct-detection wind lidar A2D were performed for pre-launch validation of Aeolus from 2007-2009. Furthermore, a unique experiment for resolving the Rayleigh-Brillouin spectral line shape in the atmosphere was accomplished in 2009 with the A2D from a mountain observatory at an altitude of 2650 m. Results of this experiment and the latest airborne campaign in the vicinity of Greenland and Iceland will be discussed.