Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry

The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior....

Full description

Bibliographic Details
Main Authors: Rewicki, Ferdinand, Gawlikowski, Jakob, Niebling, Julia, Denzler, Joachim
Other Authors: Bifet, Albert, Krilavičius, Tomas, Miliou, Ioanna, Nowaczyk, Slawomir
Format: Conference Object
Language:English
Published: Springer Cham 2024
Subjects:
Online Access:https://elib.dlr.de/206840/
https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf
https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13
_version_ 1835008139571757056
author Rewicki, Ferdinand
Gawlikowski, Jakob
Niebling, Julia
Denzler, Joachim
author2 Bifet, Albert
Krilavičius, Tomas
Miliou, Ioanna
Nowaczyk, Slawomir
author_facet Rewicki, Ferdinand
Gawlikowski, Jakob
Niebling, Julia
Denzler, Joachim
author_sort Rewicki, Ferdinand
collection Unknown
container_start_page 207
description The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior. This aspect becomes particularly critical when the monitored system is deployed in a vital environment. In this study, we delve into anomalies within the domain of Bio-Regenerative Life Support Systems (BLSS) for space exploration. We analyze anomalies found in telemetry data stemming from the EDEN ISS space greenhouse in Antarctica, using MDI and DAMP, two glassbox methods for anomaly detection based on density estimation and discord discovery respectively. We employ time series clustering on anomaly detection results to categorize various types of anomalies in both uni- and multivariate settings. We then assess the effectiveness of these methods in identifying systematic anomalous behavior. Additionally, we illustrate that the anomaly detection methods MDI and DAMP produce complementary results, as previously indicated by research.
format Conference Object
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
id ftdlr:oai:elib.dlr.de:206840
institution Open Polar
language English
op_collection_id ftdlr
op_container_end_page 222
op_doi https://doi.org/10.1007/978-3-031-70378-2_13
op_relation https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf
Rewicki, Ferdinand und Gawlikowski, Jakob und Niebling, Julia und Denzler, Joachim (2024) Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2024, 9 (14949), Seiten 207-222. Springer Cham. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024, 2024-09-09 - 2024-09-13, Vilnius, Lithuania. doi:10.1007/978-3-031-70378-2_13 <https://doi.org/10.1007/978-3-031-70378-2_13>. ISBN 978-303170377-5. ISSN 0302-9743.
op_rights cc_by
publishDate 2024
publisher Springer Cham
record_format openpolar
spelling ftdlr:oai:elib.dlr.de:206840 2025-06-15T14:12:41+00:00 Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry Rewicki, Ferdinand Gawlikowski, Jakob Niebling, Julia Denzler, Joachim Bifet, Albert Krilavičius, Tomas Miliou, Ioanna Nowaczyk, Slawomir 2024-08-22 application/pdf https://elib.dlr.de/206840/ https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13 en eng Springer Cham https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf Rewicki, Ferdinand und Gawlikowski, Jakob und Niebling, Julia und Denzler, Joachim (2024) Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2024, 9 (14949), Seiten 207-222. Springer Cham. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024, 2024-09-09 - 2024-09-13, Vilnius, Lithuania. doi:10.1007/978-3-031-70378-2_13 <https://doi.org/10.1007/978-3-031-70378-2_13>. ISBN 978-303170377-5. ISSN 0302-9743. cc_by Datenanalyse und -intelligenz Konferenzbeitrag PeerReviewed 2024 ftdlr https://doi.org/10.1007/978-3-031-70378-2_13 2025-06-04T04:58:04Z The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior. This aspect becomes particularly critical when the monitored system is deployed in a vital environment. In this study, we delve into anomalies within the domain of Bio-Regenerative Life Support Systems (BLSS) for space exploration. We analyze anomalies found in telemetry data stemming from the EDEN ISS space greenhouse in Antarctica, using MDI and DAMP, two glassbox methods for anomaly detection based on density estimation and discord discovery respectively. We employ time series clustering on anomaly detection results to categorize various types of anomalies in both uni- and multivariate settings. We then assess the effectiveness of these methods in identifying systematic anomalous behavior. Additionally, we illustrate that the anomaly detection methods MDI and DAMP produce complementary results, as previously indicated by research. Conference Object Antarc* Antarctica Unknown 207 222
spellingShingle Datenanalyse und -intelligenz
Rewicki, Ferdinand
Gawlikowski, Jakob
Niebling, Julia
Denzler, Joachim
Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
title Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
title_full Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
title_fullStr Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
title_full_unstemmed Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
title_short Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
title_sort unraveling anomalies in time: unsupervised discovery and isolation of anomalous behavior in bio-regenerative life support system telemetry
topic Datenanalyse und -intelligenz
topic_facet Datenanalyse und -intelligenz
url https://elib.dlr.de/206840/
https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf
https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13