Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry
The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior....
Main Authors: | , , , |
---|---|
Other Authors: | , , , |
Format: | Conference Object |
Language: | English |
Published: |
Springer Cham
2024
|
Subjects: | |
Online Access: | https://elib.dlr.de/206840/ https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13 |
_version_ | 1835008139571757056 |
---|---|
author | Rewicki, Ferdinand Gawlikowski, Jakob Niebling, Julia Denzler, Joachim |
author2 | Bifet, Albert Krilavičius, Tomas Miliou, Ioanna Nowaczyk, Slawomir |
author_facet | Rewicki, Ferdinand Gawlikowski, Jakob Niebling, Julia Denzler, Joachim |
author_sort | Rewicki, Ferdinand |
collection | Unknown |
container_start_page | 207 |
description | The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior. This aspect becomes particularly critical when the monitored system is deployed in a vital environment. In this study, we delve into anomalies within the domain of Bio-Regenerative Life Support Systems (BLSS) for space exploration. We analyze anomalies found in telemetry data stemming from the EDEN ISS space greenhouse in Antarctica, using MDI and DAMP, two glassbox methods for anomaly detection based on density estimation and discord discovery respectively. We employ time series clustering on anomaly detection results to categorize various types of anomalies in both uni- and multivariate settings. We then assess the effectiveness of these methods in identifying systematic anomalous behavior. Additionally, we illustrate that the anomaly detection methods MDI and DAMP produce complementary results, as previously indicated by research. |
format | Conference Object |
genre | Antarc* Antarctica |
genre_facet | Antarc* Antarctica |
id | ftdlr:oai:elib.dlr.de:206840 |
institution | Open Polar |
language | English |
op_collection_id | ftdlr |
op_container_end_page | 222 |
op_doi | https://doi.org/10.1007/978-3-031-70378-2_13 |
op_relation | https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf Rewicki, Ferdinand und Gawlikowski, Jakob und Niebling, Julia und Denzler, Joachim (2024) Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2024, 9 (14949), Seiten 207-222. Springer Cham. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024, 2024-09-09 - 2024-09-13, Vilnius, Lithuania. doi:10.1007/978-3-031-70378-2_13 <https://doi.org/10.1007/978-3-031-70378-2_13>. ISBN 978-303170377-5. ISSN 0302-9743. |
op_rights | cc_by |
publishDate | 2024 |
publisher | Springer Cham |
record_format | openpolar |
spelling | ftdlr:oai:elib.dlr.de:206840 2025-06-15T14:12:41+00:00 Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry Rewicki, Ferdinand Gawlikowski, Jakob Niebling, Julia Denzler, Joachim Bifet, Albert Krilavičius, Tomas Miliou, Ioanna Nowaczyk, Slawomir 2024-08-22 application/pdf https://elib.dlr.de/206840/ https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13 en eng Springer Cham https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf Rewicki, Ferdinand und Gawlikowski, Jakob und Niebling, Julia und Denzler, Joachim (2024) Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2024, 9 (14949), Seiten 207-222. Springer Cham. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024, 2024-09-09 - 2024-09-13, Vilnius, Lithuania. doi:10.1007/978-3-031-70378-2_13 <https://doi.org/10.1007/978-3-031-70378-2_13>. ISBN 978-303170377-5. ISSN 0302-9743. cc_by Datenanalyse und -intelligenz Konferenzbeitrag PeerReviewed 2024 ftdlr https://doi.org/10.1007/978-3-031-70378-2_13 2025-06-04T04:58:04Z The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior. This aspect becomes particularly critical when the monitored system is deployed in a vital environment. In this study, we delve into anomalies within the domain of Bio-Regenerative Life Support Systems (BLSS) for space exploration. We analyze anomalies found in telemetry data stemming from the EDEN ISS space greenhouse in Antarctica, using MDI and DAMP, two glassbox methods for anomaly detection based on density estimation and discord discovery respectively. We employ time series clustering on anomaly detection results to categorize various types of anomalies in both uni- and multivariate settings. We then assess the effectiveness of these methods in identifying systematic anomalous behavior. Additionally, we illustrate that the anomaly detection methods MDI and DAMP produce complementary results, as previously indicated by research. Conference Object Antarc* Antarctica Unknown 207 222 |
spellingShingle | Datenanalyse und -intelligenz Rewicki, Ferdinand Gawlikowski, Jakob Niebling, Julia Denzler, Joachim Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry |
title | Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry |
title_full | Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry |
title_fullStr | Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry |
title_full_unstemmed | Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry |
title_short | Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry |
title_sort | unraveling anomalies in time: unsupervised discovery and isolation of anomalous behavior in bio-regenerative life support system telemetry |
topic | Datenanalyse und -intelligenz |
topic_facet | Datenanalyse und -intelligenz |
url | https://elib.dlr.de/206840/ https://elib.dlr.de/206840/1/Unraveling_Anomalies_in_Time__Arxiv_Version_.pdf https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13 |