Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus

In preparation of the satellite mission Aeolus carried out by the European Space Agency, airborne wind lidar observations have been performed in the frame of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), employing the prototype of the satellite instrument, the ALADIN Airbor...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Lux, Oliver, Lemmerz, Christian, Weiler, Fabian, Marksteiner, Uwe, Witschas, Benjamin, Rahm, Stephan, Schäfler, Andreas, Reitebuch, Oliver
Format: Article in Journal/Newspaper
Language:German
Published: Copernicus Publications 2018
Subjects:
Online Access:https://elib.dlr.de/120334/
https://elib.dlr.de/120334/1/Lux%20-%20A2D%20observations%20for%20Aeolus%20pre-launch%20validation.pdf
https://www.atmos-meas-tech.net/11/3297/2018/
Description
Summary:In preparation of the satellite mission Aeolus carried out by the European Space Agency, airborne wind lidar observations have been performed in the frame of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), employing the prototype of the satellite instrument, the ALADIN Airborne Demonstrator (A2D). The direct-detection Doppler wind lidar system is composed of a frequency-stabilized Nd:YAG laser operating at 355 nm, a Cassegrain telescope and a dual-channel receiver. The latter incorporates a Fizeau interferometer and two sequential Fabry–Pérot interferometers to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. The benefit of the complementary design is demonstrated by airborne observations of strong wind shear related to the jet stream over the North Atlantic on 27 September and 4 October 2016, yielding high data coverage in diverse atmospheric conditions. The paper also highlights the relevance of accurate ground detection for the Rayleigh and Mie response calibration and wind retrieval. Using a detection scheme developed for the NAWDEX campaign, the obtained ground return signals are exploited for the correction of systematic wind errors. Validation of the instrument performance and retrieval algorithms was conducted by comparison with DLR's coherent wind lidar which was operated in parallel, showing a systematic error of the A2D LOS winds of less than 0.5 m s−1 and random errors from 1.5 (Mie) to 2.7 m s−1 (Rayleigh).