Framework and tools for the simulation and analysis of the radio emission from air showers at IceCube

The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km$^{2}$. Together, these will increase the sensitivity of the IceCube Neutrino Observatory to...

Full description

Bibliographic Details
Published in:Journal of Instrumentation
Main Authors: Abbasi, R., Ackermann, M., Anderson, T., Fischer, Leander, Fox, D., Franckowiak, A., Friedman, E., Fritz, A., Fürst, P., Gaisser, T. K., Gallagher, J., Ganster, E., Garcia, A., Anton, G., Garrappa, S., Gerhardt, L., Ghadimi, A., Glaser, C., Glauch, T., Glüsenkamp, T., Goehlke, N., Gonzalez, J. G., Goswami, S., Grant, D., Argüelles, C., Grégoire, T., Griswold, S., Günther, C., Gutjahr, P., Haack, C., Hallgren, A., Halliday, R., Halve, L., Halzen, F., Minh Ha, M., Ashida, Y., Hanson, K., Hardin, J., Harnisch, A. A., Haungs, A., Hebecker, D., Helbing, K., Henningsen, F., Hettinger, E. C., Hickford, S., Hignight, J., Axani, S., Hill, C., Hill, G. C., Hoffman, K. D., Hoshina, K., Hou, W., Huang, F., Huber, M., Huber, T., Hultqvist, K., Hünnefeld, M., Bai, X., Hussain, R., Hymon, K., In, S., Iovine, N., Ishihara, A., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., V. Balagopal, A., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katz, U., Barwick, S. W., Kauer, M., Kellermann, M., Kelley, J. L., Kheirandish, A., Kin, K., Kintscher, T., Kiryluk, J., Klein, S. R., Kochocki, A., Koirala, R., Bastian-Querner, Benjamin, Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Kopper, S., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, Marek, Kozynets, T., Basu, V., Krupczak, E., Kun, E., Kurahashi, N., Lad, Neha Navnitkumar, Gualda, C. Lagunas, Lanfranchi, J. L., Larson, M. J., Lauber, F., Lazar, J. P., Lee, J. W., Adams, J., Baur, S., Leonard, K., Leszczyńska, A., Li, Y., Lincetto, M., Liu, Q. R., Liubarska, M., Lohfink, E., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Bay, R., Ludwig, A., Luszczak, W., Lyu, Y., Ma, W. Y., Madsen, J., Mahn, K. B. M., Makino, Y., Mancina, S., Mariş, I. C., Martinez-Soler, I., Beatty, J. J., Maruyama, R., McCarthy, S., McElroy, T., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Meighen-Berger, S., Becker, K.-H., Micallef, J., Mockler, D., Montaruli, T., Moore, R. W., Morse, R., Moulai, M., Mukherjee, T., Naab, R., Nagai, R., Naumann, U., Tjus Becker, J., Necker, J., Nguyen, L. V., Niederhausen, H., Nisa, M. U., Nowicki, S. C., Pollmann Obertacke, A., Oehler, M., Oeyen, B., Olivas, A., O'Sullivan, E., Beise, J., Pandya, H., Pankova, D. V., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros Pérez de los, C., Peters, L., Peterson, J., Philippen, S., Bellenghi, C., Pieper, S., Pizzuto, A., Plum, M., Popovych, Y., Porcelli, A., Rodriguez, M. Prado, Pries, B., Przybylski, G. T., Raab, C., Rack-Helleis, J., Benda, S., Raissi, A., Rameez, M., Rawlins, K., Rea, I. C., Rechav, Z., Rehman, A., Reichherzer, P., Reimann, R., Renzi, G., Resconi, E., BenZvi, S., Reusch, Simeon, Rhode, W., Richman, M., Riedel, B., Roberts, E. J., Robertson, S., Roellinghoff, G., Rongen, M., Rott, C., Ruhe, T., Berley, D., Ryckbosch, D., Cantu, D. Rysewyk, Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Herrera, S. E. Sanchez, Sandrock, A., Santander, M., Sarkar, S., Aguilar, J. A., Bernardini, E., Satalecka, K., Schaufel, M., Schieler, H., Schindler, S., Schmidt, T., Schneider, A., Schneider, J., Schröder, F. G., Schumacher, L., Schwefer, G., Besson, D. Z., Sclafani, S., Seckel, D., Seunarine, S., Sharma, A., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Binder, G., Soedingrekso, J., Soldin, D., Spannfellner, C., Spiczak, G. M., Spiering, C., Stachurska, Juliana, Stamatikos, M., Stanev, T., Stein, Robert, Stettner, J., Bindig, D., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Thwaites, J., Tilav, S., Tischbein, F., Tollefson, K., Blaufuss, E., Tönnis, C., Toscano, S., Tosi, D., Trettin, Alexander, Tselengidou, M., Tung, C. F., Turcati, A., Turcotte, R., Turley, C. F., Twagirayezu, J. P., Blot, S., Ty, B., Elorrieta Unland, M. A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Veitch-Michaelis, J., Verpoest, S., Walck, C., Boddenberg, M., Wang, W., Watson, T. B., Weaver, C., Weigel, P., Weindl, A., Weiss, M. J., Weldert, J., Wendt, C., Werthebach, J., Weyrauch, M., Bontempo, F., Whitehorn, N., Wiebusch, C. H., Willey, N., Williams, D. R., Wolf, M., Wrede, G., Wulff, J., Xu, X. W., Yanez, J. P., Yildizci, E., Book, J. Y., Yoshida, S., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P., IceCube Collaboration, Borowka, J., Ahlers, M., Böser, S., Botner, O., Böttcher, J., Bourbeau, E., Bradascio, Federica, Braun, J., Brinson, B., Bron, S., Brostean-Kaiser, Jannes, Burley, R. T., Ahrens, M., Busse, R. S., Campana, M. A., Carnie-Bronca, E. G., Chen, C., Chen, Z., Chirkin, D., Choi, K., Clark, B. A., Clark, K., Classen, L., Alameddine, J. M., Coleman, A., Collin, G. H., Connolly, A., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dappen, C., Dave, P., Alves, A. A., De Clercq, C., DeLaunay, J. J., López, D. Delgado, Dembinski, H., Deoskar, K., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., Amin, N. M., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dittmer, M., Dujmovic, H., Dunkman, M., DuVernois, M. A., Ehrhardt, T., Eller, P., Engel, R., Andeen, K., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Fienberg, A. T., Finley, C.
Format: Article in Journal/Newspaper
Language:English
Published: Inst. of Physics 2022
Subjects:
air
Online Access:https://bib-pubdb1.desy.de/record/480991
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-04131%22
Description
Summary:The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km$^{2}$. Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.