Observation of an optical anisotropy in the deep glacial ice at the geographic South Pole using a laser dust logger

We report on a depth-dependent observation of a directional anisotropy in the recorded intensity of backscattered light as measured by an oriented laser dust logger. The measurement was performed in a drill hole at the geographic South Pole about a kilometer away from the IceCube Neutrino Observator...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Rongen, Martin, Bay, Ryan Carlton, Blot, Summer
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus 2020
Subjects:
Online Access:https://bib-pubdb1.desy.de/record/453895
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2021-00255%22
Description
Summary:We report on a depth-dependent observation of a directional anisotropy in the recorded intensity of backscattered light as measured by an oriented laser dust logger. The measurement was performed in a drill hole at the geographic South Pole about a kilometer away from the IceCube Neutrino Observatory. The drill hole has remained open for access since the SPICEcore collaboration retrieved a 1751 m ice core. We find the anisotropy axis of 126±3° as measured below 1100 m to be compatible with the local flow direction. The observation is discussed in comparison to a similar anisotropy observed in data from the IceCube Neutrino Observatory and favors a birefringence-based scenario over previously suggested Mie-scattering-based explanations. In the future, the measurement principle, when combined with a full-chain simulation, may have the potential to provide a continuous record of fabric properties along the entire depth of a drill hole.