Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region

SOM stabilization rates were estimated in the soils of Antarctic region in case of influence of ornithogenic factor. Soils in large penguin clusters, near nests of Stercorarius sp., as well as soils located in geochemically subordinate positions (also often are visited by birds) were found to be cha...

Full description

Bibliographic Details
Main Authors: CHEBYKİNA (MAKSİMOVA), Ekaterina, ALEKSEEV, Ivan, ABAKUMOV, Evgeny
Format: Article in Journal/Newspaper
Language:English
Published: Avrasya Toprak Bilimleri Dernekleri Federasyonu 2021
Subjects:
Online Access:https://dergipark.org.tr/tr/pub/ejss/issue/60044/868088
Description
Summary:SOM stabilization rates were estimated in the soils of Antarctic region in case of influence of ornithogenic factor. Soils in large penguin clusters, near nests of Stercorarius sp., as well as soils located in geochemically subordinate positions (also often are visited by birds) were found to be characterized by an increased content of carbon and nitrogen with a rather narrow ratio of C/N. The pH values decreased in ornithogenic soils due to the organic acids that produced plants (mosses, Deschampsia antarctica) inhabit these soils and the decomposition products of the organic matter guano. The amount of CO2, in general, released over the entire experiment period is quite large for both ornithogenic and non-ornithogenic soils. CO2 emission rates were the highest in ornithogenic soils. Ornithogenic soils of the studied area are characterized by the most stabilized organic matter. Thus, the avifauna favors and increases the rate of the mineralization process by several times. An acceleration in the organic matter mineralization rate leads to an increase in nutrients amount available to plants, as in the case of the studied soils. The quality of initial SOM is of a great importance in post-ornithogenic environments. Therefore, further researches of CO2 emissions rates are needed to characterize post-ornithogenic dynamics and develop an approach to model this process.