Wing Performance Changes Due to Wing Surface Contours

Most leading-edge tubercles studies (inspired from the humpback whale) involve serrated-type leading edges where the airfoil cross-section is destroyed. In this research, the effect of the tubercles is investigated where the airfoil cross-section is preserved along the span of the wing. By maintaini...

Full description

Bibliographic Details
Format: Text
Language:unknown
Published: eCommons 2019
Subjects:
Online Access:https://ecommons.udayton.edu/stander_posters/1613
https://ecommons.udayton.edu/context/stander_posters/article/2613/viewcontent/Wining_performance_changes_2019.pdf
Description
Summary:Most leading-edge tubercles studies (inspired from the humpback whale) involve serrated-type leading edges where the airfoil cross-section is destroyed. In this research, the effect of the tubercles is investigated where the airfoil cross-section is preserved along the span of the wing. By maintaining the same airfoil section throughout, reducing the chord reduces the thickness of the wing, creating uneven wing surface contours. These contours are hypothesized to affect the spanwise flow thereby affecting the induced drag, roll-up of the wingtip vortex, and the parasite drag of the wing. Sensitivity study was done on the number of contours along the span (6, 9 and 12) and contour location (leading edge, trailing edge, both leading and trailing edge) by performing force-based experiments at the University of Dayton Low Speed Wind Tunnel (UD-LSWT). The aerodynamic coefficients were compared among the wing with and without contours. The aerodynamic lift and drag coefficients along with variations in aerodynamic efficiency will be presented for wings with and without contours. https://ecommons.udayton.edu/stander_posters/2613/thumbnail.jpg