Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland

Modelling the hydrology of the Greenland ice sheet, including the filling and drainage of supraglacial lakes, requires melt inputs generated at high spatial and temporal resolution. Here we apply a high spatial (100 m) and temporal (1 hour) mass-balance model to a 450 km2 subset of the Paakitsoq reg...

Full description

Bibliographic Details
Main Authors: Banwell, Alison F., Willis, Ian C., Arnold, Neil S., Messerli, Alexandra, Rye, Cameron J., Tedesco, Marco, Ahlstrøm, Andreas P.
Format: Text
Language:unknown
Published: Columbia University 2012
Subjects:
Online Access:https://dx.doi.org/10.7916/d8cf9q01
https://academiccommons.columbia.edu/doi/10.7916/D8CF9Q01
Description
Summary:Modelling the hydrology of the Greenland ice sheet, including the filling and drainage of supraglacial lakes, requires melt inputs generated at high spatial and temporal resolution. Here we apply a high spatial (100 m) and temporal (1 hour) mass-balance model to a 450 km2 subset of the Paakitsoq region, West Greenland. The model is calibrated by adjusting the values for parameters of fresh snow density, threshold temperature for solid/liquid precipitation and elevation-dependent precipitation gradient to minimize the error between modelled output and surface height and albedo measurements from three Greenland Climate Network stations for the mass-balance years 2000/01 and 2004/05. Bestfit parameter values are consistent between the two years at 400 kg m–3, 2° C and +14% (100 m)–1, respectively. Model performance is evaluated, first, by comparing modelled snow and ice distribution with that derived from Landsat-7 ETM+ satellite imagery using normalized-difference snow index classification and supervised image thresholding; and second, by comparing modelled albedo with that retrieved from the MODIS sensor MOD10A1 product. Calculation of mass-balance components indicates that 6% of surface meltwater and rainwater refreezes in the snowpack and does not become runoff, such that refreezing accounts for 31% of the net accumulation.