Reconstructing the Upper Water Column Thermal Structure in the Atlantic Ocean ...
The thermal structure of the upper ocean (0–1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six...
Main Authors: | , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Columbia University
2014
|
Subjects: | |
Online Access: | https://dx.doi.org/10.7916/d8668b5c https://academiccommons.columbia.edu/doi/10.7916/D8668B5C |
Summary: | The thermal structure of the upper ocean (0–1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from δ18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, ... |
---|