Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites

Sea-level rise due to both climate change and non-climatic factors threatens coastal settle- ments, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate...

Full description

Bibliographic Details
Main Authors: Tebaldi, Claudia, Rasmussen, D. J., Kopp, Robert E., Horton, Radley M., Little, Christopher M., Mitrovica, Jerry X., Oppenheimer, Michael, Strauss, Benjamin H.
Format: Article in Journal/Newspaper
Language:English
Published: Rutgers University 2014
Subjects:
Online Access:https://dx.doi.org/10.7282/t3h70hsp
https://scholarship.libraries.rutgers.edu/esploro/outputs/journalArticle/991031550244804646
Description
Summary:Sea-level rise due to both climate change and non-climatic factors threatens coastal settle- ments, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate dif- ferent risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the com- ing decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5 – 1.2 m under representa- tive concentration pathway (RCP) 8.5, 0.4 – 0.9 m under RCP 4.5, and 0.3 – 0.8 m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceano- graphic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of “1-in-10” and “1-in-100” year events.