Consistent changes in the intestinal microbiota of Atlantic salmon fed insect meal diets

Abstract Background Being part of fish's natural diets, insects have become a practical alternative feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an...

Full description

Bibliographic Details
Main Authors: Li, Yanxian, Gajardo, Karina, Jaramillo-Torres, Alexander, Kortner, Trond M., Krogdahl, Ã…shild
Format: Article in Journal/Newspaper
Language:unknown
Published: figshare 2022
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.5786632
https://springernature.figshare.com/collections/Consistent_changes_in_the_intestinal_microbiota_of_Atlantic_salmon_fed_insect_meal_diets/5786632
Description
Summary:Abstract Background Being part of fish's natural diets, insects have become a practical alternative feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. Results The insect meal diet markedly modulated the salmon intestinal microbiota. Salmon fed the insect meal diet showed similar or lower alpha-diversity indices in the digesta but higher alpha-diversity indices in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were also present in the feeds. Conclusions We conclude that salmon fed the insect meal diets show consistent changes in the intestinal microbiota. The next challenge is to evaluate the extent to which these alterations are attributable to feed microbiota and dietary nutrients, and what these changes mean for fish physiology and health.