Evolutionary ecology of the visual opsin gene sequence and its expression in turbot (Scophthalmus maximus) ...

Abstract Background As flatfish, turbot undergo metamorphosis as part of their life cycle. In the larval stage, turbot live at the ocean surface, but after metamorphosis they move to deeper water and turn to benthic life. Thus, the light environment differs greatly between life stages. The visual sy...

Full description

Bibliographic Details
Main Authors: Wang, Yunong, Zhou, Li, Wu, Lele, Song, Changbin, Ma, Xiaona, Xu, Shihong, Du, Tengfei, Li, Xian, Li, Jun
Format: Article in Journal/Newspaper
Language:unknown
Published: figshare 2021
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.5456752.v1
https://springernature.figshare.com/collections/Evolutionary_ecology_of_the_visual_opsin_gene_sequence_and_its_expression_in_turbot_Scophthalmus_maximus_/5456752/1
Description
Summary:Abstract Background As flatfish, turbot undergo metamorphosis as part of their life cycle. In the larval stage, turbot live at the ocean surface, but after metamorphosis they move to deeper water and turn to benthic life. Thus, the light environment differs greatly between life stages. The visual system plays a great role in organic evolution, but reports of the relationship between the visual system and benthic life are rare. In this study, we reported the molecular and evolutionary analysis of opsin genes in turbot, and the heterochronic shifts in opsin expression during development. Results Our gene synteny analysis showed that subtype RH2C was not on the same gene cluster as the other four green-sensitive opsin genes (RH2) in turbot. It was translocated to chromosome 8 from chromosome 6. Based on branch-site test and spectral tuning sites analyses, E122Q and M207L substitutions in RH2C, which were found to be under positive selection, are closely related to the blue shift of optimum light sensitivities. ...