The source of topography across the Cumberland Peninsula, Baffin Island, Arctic Canada: differential exhumation of a North Atlantic rift flank

Elevated topography is evident across the continental margins of the Atlantic. The Cumberland Peninsula, Baffin Island, formed as the result of rifting along the Labrador–Baffin margins in the late Mesozoic and is dominated by low relief high elevation topography. Apatite fission track (AFT) analysi...

Full description

Bibliographic Details
Main Authors: Jess, Scott, Stephenson, Randell, Nielsen, Søren B., Brown, Roderick
Format: Article in Journal/Newspaper
Language:unknown
Published: Figshare 2019
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.4528409
https://geolsoc.figshare.com/collections/The_source_of_topography_across_the_Cumberland_Peninsula_Baffin_Island_Arctic_Canada_differential_exhumation_of_a_North_Atlantic_rift_flank/4528409
Description
Summary:Elevated topography is evident across the continental margins of the Atlantic. The Cumberland Peninsula, Baffin Island, formed as the result of rifting along the Labrador–Baffin margins in the late Mesozoic and is dominated by low relief high elevation topography. Apatite fission track (AFT) analysis of the landscape previously concluded that the area has experienced a differential protracted cooling regime since the Devonian; however, defined periods of cooling and the direct causes of exhumation were unresolved. This work combines the original AFT data with 98 apatite new (U–Th)/He ages from 16 samples and applies the newly developed 'broken crystals' technique to provide a greater number of thermal constraints for thermal history modelling to better constrain the topographic evolution. The spatial distribution of AFT and AHe ages implies exhumation has been significant toward the SE (Labrador) coastline, while results of thermal modelling outline three notable periods of cooling in the pre-rift (460 Ma–200 Ma), from syn-rift to present (120 Ma–0 Ma) and within post-rift (30 Ma–0 Ma) stages. Pre-rift cooling is interpreted as the result of exhumation of Laurentia, syn-rift cooling as the result of rift flank uplift to the SE and differential erosion of landscape, while the final post-rift period is likely an artefact of the modelling process. These results suggest the source of the Cumberland Peninsula's modern-day elevated topography is uplift during rifting in the Cretaceous and the isostatic compensation following continuous Mesozoic and Cenozoic differential erosion. This work highlights the how interaction of rift tectonics and isostasy can be the principal source for modern elevated continental margins, while also providing insight into the pre-rift exhumational history of central Laurentia.