Pollen record of disturbed topsoil as an indirect measurement of the potential risk of the introduction of non-native plants in maritime Antarctica

Abstract Background This is a study of current pollen rain on soil disturbed by human use on the Fildes Peninsula, King George Island, South Shetland Islands. A sector strongly affected by human activity, an area between the Eduardo Frei Montalva Chilean Air Force (FACH) base and the Professor Julio...

Full description

Bibliographic Details
Main Authors: Fuentes-Lillo, Eduardo, J. Troncoso-Castro, Marely Cuba-Díaz, Rondanelli-Reyes, Mauricio
Format: Article in Journal/Newspaper
Language:unknown
Published: Figshare 2016
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.3603203
https://figshare.com/collections/Pollen_record_of_disturbed_topsoil_as_an_indirect_measurement_of_the_potential_risk_of_the_introduction_of_non-native_plants_in_maritime_Antarctica/3603203
Description
Summary:Abstract Background This is a study of current pollen rain on soil disturbed by human use on the Fildes Peninsula, King George Island, South Shetland Islands. A sector strongly affected by human activity, an area between the Eduardo Frei Montalva Chilean Air Force (FACH) base and the Professor Julio Escudero base of the Chilean Antarctic Institute (INACH) were sampled. A less used sector associated with scientific activity and controlled tourism, Ardley Island, and an area of low human activity, the terminal moraine of the Collins glacier, were also sampled. The samples were collected in the southern summer of 2015 and kept in the Palynology and Plant Ecology Laboratory of the Los Angeles Campus of the Universidad de Concepción, Chile. Findings The area of greatest human activity concentrated the greatest diversity (12 taxa) of pollen grains. Three taxa are considered native to the region. Non-native taxa determined for this sector in turn had the greatest invasion (INV) factor. The dominant families were Brassicaceae and Asteraceae. The results for Ardley and Collins represent the cryptogamic flora and grasses typical of the ecosystem. Conclusion Under the current climate change scenario, the pollen rain in Antarctic soil, in addition to obeying the random patterns of its natural dispersion, could be interpreted as an indirect measurement of the potential risk of the passive transport of propagules to Antarctica mediated by human beings.