McMurdo Dry Valleys LTER: Phytoplankton water column profiles in Lake Bonney, Antarctica from 2004 to 2015

Lake Bonney (McMurdo Dry Valleys, east Antarctica) represents a year-round refugia for life adapted to extreme conditions. Lake level has risen by more than 3 m since 2004, but impacts of rapid lake level rise on phytoplankton community structure is also poorly understood. From 2004 to 2015, in conc...

Full description

Bibliographic Details
Main Authors: McMurdo Dry Valleys LTER, Patriarche, Jeff, Priscu, John, Takacs-Vesbach, Cristina, Winslow, Luke, Myers, Krista, Buelow, Heather, Morgan-Kiss, Rachael, Doran, Peter
Format: Dataset
Language:English
Published: Environmental Data Initiative 2019
Subjects:
Online Access:https://dx.doi.org/10.6073/pasta/961988b61f4deed59d18980287bf65b0
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.76.1
Description
Summary:Lake Bonney (McMurdo Dry Valleys, east Antarctica) represents a year-round refugia for life adapted to extreme conditions. Lake level has risen by more than 3 m since 2004, but impacts of rapid lake level rise on phytoplankton community structure is also poorly understood. From 2004 to 2015, in concert with the summer limnological samplings, an in situ submersible spectrofluorometer (bbe FluoroProbe) was used to profile phytoplankton throughout the water columns of east and west lobes Lake Bonney to quantify the vertical structure of four functional algal groups (green algae, brown/mixed algae, cryptophytes, cyanobacteria). Our findings showed that phytoplankton communities were differentially impacted by physical and chemical factors over long-term vs. seasonal time scales. Following a summer of rapid lake level rise (2010-11), an increase in depth integrated chlorophyll a (chl-a) occurred in Lake Bonney caused by stimulation of photoautotrophic green algae. Collectively our data reveal that phytoplankton groups possessing variable trophic abilities are differentially competitive during seasonal and long-term time scales owing to periods of higher nutrients (photoautotrophs) vs. light/energy limitation (mixotrophs).