Antarctic Slope Current control on cross-slope heat transport ...

<!--!introduction!--> Ocean heat transport towards Antarctica directly drives the melting of Antarctic ice shelves, modulating sea level rise and the formation of Antarctic Bottom Water. A common dynamical assumption is that heat transport across the Antarctic continental slope is modulated by...

Full description

Bibliographic Details
Main Authors: Aguiar, Wilton, Morrison, Adele, Huneke, Wilma, Hogg, Andy, England, Matthew, Spence, Paul
Format: Conference Object
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-3781
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020764
Description
Summary:<!--!introduction!--> Ocean heat transport towards Antarctica directly drives the melting of Antarctic ice shelves, modulating sea level rise and the formation of Antarctic Bottom Water. A common dynamical assumption is that heat transport across the Antarctic continental slope is modulated by the strength of the Antarctic Slope Current (ASC), which is thought to act as a barrier to cross-slope heat transport. However, observations of the ASC are too scarce to investigate its relationship to poleward heat transport across large circumpolar spatial scales, or over long temporal scales. Also, until recently, ocean models lacked the spatial resolution required to accurately represent the ASC or the eddy heat transport onto the Antarctic shelf. In this study, we analyze the relationship between the ASC and the cross-slope heat transport in a circumpolar, eddy-rich ocean and sea ice simulation. We find that the local strength of the time-mean ASC is not a good predictor of local cross-slope heat transport, ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...