Roles of north Indian Ocean and tropical Atlantic SST in latitudinal extension of western North Pacific anticyclone during El Niño ...

<!--!introduction!--> The El Niño-related anomalous western North Pacific anticyclone (WNPAC) shows different latitudinal extensions during the El Niño decaying summer, which determines the moisture transport to different regions and leads to distinct climate impacts over East Asia. It is know...

Full description

Bibliographic Details
Main Author: Feng, Juan
Format: Conference Object
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-2208
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018620
Description
Summary:<!--!introduction!--> The El Niño-related anomalous western North Pacific anticyclone (WNPAC) shows different latitudinal extensions during the El Niño decaying summer, which determines the moisture transport to different regions and leads to distinct climate impacts over East Asia. It is known that both the north Indian Ocean (NIO) sea surface temperature (SST) and the tropical North Atlantic (TNA) SST can generate a WNPAC in summer. However, the difference between the NIO SST-forced WNPAC and the TNA SST-forced WNPAC has hardly been noted before now. This study shows that the NIO SST warming makes the WNPAC contract southward, whereas the TNA SST warming makes the WNPAC extend northward. The NIO SST warming generates the WNPAC via a Kelvin wave response. Owing to the limited domain of Kelvin wave activity, the Kelvin wave-induced suppressed convection over the western Pacific is confined south of 20°N, resulting in the WNPAC being concentrated in the low latitudes. In contrast, the TNA SST warming ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...