Why does the upward surface turbulent heat flux resulting from sea ice loss last only for a few days? ...

<!--!introduction!--> This study explores the reason why strong upward anomalous surface turbulent heat fluxes (STHFs) over the Barents and Kara Seas (BKS) occur for a period of only a few days after wind-driven sea ice loss, even though anomalously low sea ice persists for more than one month...

Full description

Bibliographic Details
Main Authors: Jiang, Zhina, Feldstein, Steven, Lee, Sukyoung
Format: Conference Object
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-2130
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018703
Description
Summary:<!--!introduction!--> This study explores the reason why strong upward anomalous surface turbulent heat fluxes (STHFs) over the Barents and Kara Seas (BKS) occur for a period of only a few days after wind-driven sea ice loss, even though anomalously low sea ice persists for more than one month. Composite analysis with ERA5 reanalysis data reveals that the sea ice decline coincides with the poleward advection of warm, moist air on the eastern flank of a synoptic-scale surface low. This results in the anomalous surface air temperature (SAT) exceeding the anomalous skin temperature (SKT) and a downward anomalous STHF. As the surface low propagates eastward, the wind direction changes, resulting in the advection of cold, dry air, the anomalous SKT exceeding the anomalous SAT and a brief period with a strong upward anomalous STHF. This period of strong upward anomalous STHF is cut short, as the surface low propagates southeastward out of the BKS. The eastward propagation of the surface low is crucial, as it ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...