Evaluating long-term variability of the Arctic stratospheric polar vortex simulated by CMIP6 models ...

<!--!introduction!--> Understanding polar vortex variability is helpful for extended-range weather forecasting. The present study evaluates long-term changes in the position and strength of the polar vortex in the Arctic lower stratosphere during the winters from 1980/81 to 2013/14. Overall, t...

Full description

Bibliographic Details
Main Authors: Zhao, Siyi, Zhang, Jiankai
Format: Conference Object
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-1908
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5017629
Description
Summary:<!--!introduction!--> Understanding polar vortex variability is helpful for extended-range weather forecasting. The present study evaluates long-term changes in the position and strength of the polar vortex in the Arctic lower stratosphere during the winters from 1980/81 to 2013/14. Overall, the CMIP6 models well capture the spatial characteristics of the polar vortex with spatial correlation coefficients between the potential vorticity (PV) in the lower stratosphere from simulations and MERRA2 products generally greater than 0.85 for all CMIP6 models during winter. However, most CMIP6 models underestimate the strength of polar vortex in the lower stratosphere, with the largest negative bias up to about −20%. The present study further reveals that there is an anticorrelation between the polar vortex strength bias and area bias simulated by CMIP6 models. In addition, there is a positive correlation between the trend of EP-flux divergence for wavenumber one accumulated in early winter and the trend in ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...