Terrestrial applications of chronometric geodesy ...

<!--!introduction!--> The novel method of relativistic geodesy using clock networks has reached an accuracy level that will enable interesting applications in the near future. High-performance clocks with a fractional frequency uncertainty of 10^-18 can detect a gravitational-potential change...

Full description

Bibliographic Details
Main Authors: Vincent, Asha, Mueller, Juergen
Format: Conference Object
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-0701
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016787
Description
Summary:<!--!introduction!--> The novel method of relativistic geodesy using clock networks has reached an accuracy level that will enable interesting applications in the near future. High-performance clocks with a fractional frequency uncertainty of 10^-18 can detect a gravitational-potential change of 0.1 m^2/s^2 or a corresponding height difference of 1 cm between two clock sites. Here, we explore the advantages of terrestrial clock networks for the detection of time-variable gravity signals and for height system unification by simulations where we consider realistic observation scenarios. On the deformable Earth, terrestrial clock observations contain potential variations due to mass changes and surface displacements. Four case studies were conducted in the Himalayas, Amazon, Greenland, and Fennoscandia to study different mass change processes like seasonal precipitation, present-day ice mass loss, and glacial isostatic adjustment (GIA). Height system unification involves the estimation of different errors ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...